Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 54, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491554

RESUMO

BACKGROUND: Massive amounts of sewage sludge are generated during biological sewage treatment and are commonly subjected to anaerobic digestion, land application, and landfill disposal. Concurrently, persistent organic pollutants (POPs) are frequently found in sludge treatment and disposal systems, posing significant risks to both human health and wildlife. Metabolically versatile microorganisms originating from sewage sludge are inevitably introduced to sludge treatment and disposal systems, potentially affecting the fate of POPs. However, there is currently a dearth of comprehensive assessments regarding the capability of sewage sludge microbiota from geographically disparate regions to attenuate POPs and the underpinning microbiomes. RESULTS: Here we report the global prevalence of organohalide-respiring bacteria (OHRB) known for their capacity to attenuate POPs in sewage sludge, with an occurrence frequency of ~50% in the investigated samples (605 of 1186). Subsequent laboratory tests revealed microbial reductive dechlorination of polychlorinated biphenyls (PCBs), one of the most notorious categories of POPs, in 80 out of 84 sludge microcosms via various pathways. Most chlorines were removed from the para- and meta-positions of PCBs; nevertheless, ortho-dechlorination of PCBs also occurred widely, although to lower extents. Abundances of several well-characterized OHRB genera (Dehalococcoides, Dehalogenimonas, and Dehalobacter) and uncultivated Dehalococcoidia lineages increased during incubation and were positively correlated with PCB dechlorination, suggesting their involvement in dechlorinating PCBs. The previously identified PCB reductive dehalogenase (RDase) genes pcbA4 and pcbA5 tended to coexist in most sludge microcosms, but the low ratios of these RDase genes to OHRB abundance also indicated the existence of currently undescribed RDases in sewage sludge. Microbial community analyses revealed a positive correlation between biodiversity and PCB dechlorination activity although there was an apparent threshold of community co-occurrence network complexity beyond which dechlorination activity decreased. CONCLUSIONS: Our findings that sludge microbiota exhibited nearly ubiquitous dechlorination of PCBs indicate widespread and nonnegligible impacts of sludge microbiota on the fate of POPs in sludge treatment and disposal systems. The existence of diverse OHRB also suggests sewage sludge as an alternative source to obtain POP-attenuating consortia and calls for further exploration of OHRB populations in sewage sludge. Video Abstract.


Assuntos
Chloroflexi , Poluentes Ambientais , Bifenilos Policlorados , Humanos , Bifenilos Policlorados/análise , Esgotos , Chloroflexi/genética , Prevalência , Biodegradação Ambiental , Bactérias/genética , Bactérias/metabolismo , Poluentes Ambientais/análise , Sedimentos Geológicos/microbiologia
2.
Environ Sci Technol ; 58(9): 4214-4225, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373236

RESUMO

Anthropogenic organohalide pollutants pose a severe threat to public health and ecosystems. In situ bioremediation using organohalide respiring bacteria (OHRB) offers an environmentally friendly and cost-efficient strategy for decontaminating organohalide-polluted sites. The genomic structures of many OHRB suggest that dehalogenation traits can be horizontally transferred among microbial populations, but their occurrence among anaerobic OHRB has not yet been demonstrated experimentally. This study isolates and characterizes a novel tetrachloroethene (PCE)-dechlorinating Sulfurospirillum sp. strain SP, distinguishing itself among anaerobic OHRB by showcasing a mechanism essential for horizontal dissemination of reductive dehalogenation capabilities within microbial populations. Its genetic characterization identifies a unique plasmid (pSULSP), harboring reductive dehalogenase and de novo corrinoid biosynthesis operons, functions critical to organohalide respiration, flanked by mobile elements. The active mobility of these elements was demonstrated through genetic analyses of spontaneously emerging nondehalogenating variants of strain SP. More importantly, bioaugmentation of nondehalogenating microcosms with pSULSP DNA triggered anaerobic PCE dechlorination in taxonomically diverse bacterial populations. Our results directly support the hypothesis that exposure to anthropogenic organohalide pollutants can drive the emergence of dehalogenating microbial populations via horizontal gene transfer and demonstrate a mechanism by which genetic bioaugmentation for remediation of organohalide pollutants could be achieved in anaerobic environments.


Assuntos
Chloroflexi , Poluentes Ambientais , Ecossistema , Bactérias/genética , Respiração , Família Multigênica , Biodegradação Ambiental
3.
Environ Sci Technol ; 57(40): 15112-15122, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37772791

RESUMO

Cocontamination by multiple chlorinated solvents is a prevalent issue in groundwater, presenting a formidable challenge for effective remediation. Despite the recognition of this issue, a comprehensive assessment of microbial detoxification processes involving chloroethenes and associated cocontaminants, along with the underpinning microbiome, remains absent. Moreover, strategies to mitigate the inhibitory effects of cocontaminants have not been reported. Here, we revealed that chloroform exhibited the most potent inhibitory effects, followed by 1,1,1-trichloroethane and 1,1,2-trichloroethane, on dechlorination of dichloroethenes (DCEs) in Dehalococcoides-containing consortia. The observed inhibition could be attributed to suppression of biosynthesis and enzymatic activity of reductive dehalogenases and growth of Dehalococcoides. Notably, cocontaminants more profoundly inhibited Dehalococcoides populations harboring the vcrA gene than those possessing the tceA gene, thereby explaining the accumulation of vinyl chloride under cocontaminant stress. Nonetheless, we successfully ameliorated cocontaminant inhibition by augmentation with Desulfitobacterium sp. strain PR owing to its ability to attenuate cocontaminants, resulting in concurrent detoxification of DCEs, trichloroethanes, and chloroform. Microbial community analyses demonstrated obvious alterations in taxonomic composition, structure, and assembly of the dechlorinating microbiome in the presence of cocontaminants, and introduction of strain PR reshaped the dechlorinating microbiome to be similar to its original state in the absence of cocontaminants. Altogether, these findings contribute to developing bioremediation technologies to clean up challenging sites polluted with multiple chlorinated solvents.


Assuntos
Chloroflexi , Cloreto de Vinil , Dehalococcoides , Chloroflexi/genética , Clorofórmio/farmacologia , Biodegradação Ambiental , Cloreto de Vinil/farmacologia , Solventes/farmacologia
4.
J Hazard Mater ; 448: 130895, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758435

RESUMO

Micro- and nano-plastics are prevalent in diverse ecosystems, but their impacts on biotransformation of organohalide pollutants and underpinning microbial communities remain poorly understood. Here we investigated the influence of micro- and nano-plastics on microbial reductive dehalogenation at strain and community levels. Generally, microplastics including polyethylene (PE), polystyrene (PS), polylactic acid (PLA), and a weathered microplastic mixture increased dehalogenation rate by 10 - 217% in both the Dehalococcoides isolate and enrichment culture, whereas the effects of polyvinyl chloride (PVC) and a defined microplastic mixture depended on their concentrations and cultures. Contrarily, nano-PS (80 nm) consistently inhibited dehalogenation due to increased production of reactive oxygen species. Nevertheless, the enrichment culture showed higher tolerance to nano-PS inhibition, implying crucial roles of non-dehalogenating populations in ameliorating nanoplastic inhibition. The variation in dehalogenation activity was linked to altered organohalide-respiring bacteria (OHRB) growth and reductive dehalogenase (RDase) gene transcription. Moreover, microplastics changed the community structure and benefited the enrichment of OHRB, favoring the proliferation of Dehalogenimonas. More broadly, the assembly of microbial communities on plastic biofilms was more deterministic than that in the planktonic cells, with more complex co-occurrence networks in the former. Collectively, these findings contribute to better understanding the fate of organohalides in changing environments with increasing plastic pollution.


Assuntos
Poluentes Ambientais , Microplásticos/toxicidade , Plásticos , Ecossistema , Biodegradação Ambiental
5.
ISME J ; 17(5): 660-670, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36765150

RESUMO

Organohalide pollutants are prevalent in coastal regions due to extensive intervention by anthropogenic activities, threatening public health and ecosystems. Gradients in salinity are a natural feature of coasts, but their impacts on the environmental fate of organohalides and the underlying microbial communities remain poorly understood. Here we report the effects of salinity on microbial reductive dechlorination of tetrachloroethene (PCE) and polychlorinated biphenyls (PCBs) in consortia derived from distinct environments (freshwater and marine sediments). Marine-derived microcosms exhibited higher halotolerance during PCE and PCB dechlorination, and a halotolerant dechlorinating culture was enriched from these microcosms. The organohalide-respiring bacteria (OHRB) responsible for PCE and PCB dechlorination in marine microcosms shifted from Dehalococcoides to Dehalobium when salinity increased. Broadly, lower microbial diversity, simpler co-occurrence networks, and more deterministic microbial community assemblages were observed under higher salinity. Separately, we observed that inhibition of dechlorination by high salinity could be attributed to suppressed viability of Dehalococcoides rather than reduced provision of substrates by syntrophic microorganisms. Additionally, the high activity of PCE dechlorinating reductive dehalogenases (RDases) in in vitro tests under high salinity suggests that high salinity likely disrupted cellular components other than RDases in Dehalococcoides. Genomic analyses indicated that the capability of Dehalobium to perform dehalogenation under high salinity was likely owing to the presence of genes associated with halotolerance in its genomes. Collectively, these mechanistic and ecological insights contribute to understanding the fate and bioremediation of organohalide pollutants in environments with changing salinity.


Assuntos
Chloroflexi , Poluentes Ambientais , Microbiota , Bifenilos Policlorados , Chloroflexi/genética , Salinidade , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Biodegradação Ambiental , Desempenho Físico Funcional
6.
J Soc Pers Relat ; 40(5): 1579-1600, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603400

RESUMO

Main effect models contend that perceived social support benefits mental health in the presence and the absence of stressful events, whereas stress-buffering models contend that perceived social support benefits mental health especially when individuals are facing stressful events. We tested these models of how perceived social support impacts mental health during the COVID-19 pandemic and evaluated whether characteristics of everyday social interactions statistically mediated this association - namely, (a) received support, the visible and deliberate assistance provided by others, and (b) pleasantness, the extent to which an interaction is positive, flows easily, and leads individuals to feel understood and validated. 591 United States adults completed a 3-week ecological momentary assessment protocol sampling characteristics of their everyday social interactions that was used to evaluate between-person average values and within-person daily fluctuations in everyday social interaction characteristics. Global measures of perceived social support and pandemic-related stressors were assessed at baseline. Psychiatric symptoms of depression and anxiety were assessed at baseline, at the end of each day of ecological momentary assessment, and at 3-week follow-up. Consistent with a main effect model, higher baseline perceived social support predicted decreases in psychiatric symptoms at 3-week follow-up (ß = -.09, p = .001). Contrary to a stress-buffering model, we did not find an interaction of pandemic-stressors × perceived social support. The main effect of perceived social support on mental health was mediated by the pleasantness of everyday social interactions, but not by received support in everyday social interactions. We found evidence for both main effects and stress-buffering effects of within-person fluctuations in interaction pleasantness on daily changes in mental health. Results suggest the importance of everyday social interaction characteristics, especially their pleasantness, in linking perceived social support and mental health.

7.
ISME J ; 16(9): 2123-2131, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35710945

RESUMO

Widespread polybrominated diphenyl ethers (PBDEs) contamination poses risks to human health and ecosystems. Bioremediation is widely considered to be a less ecologically disruptive strategy for remediation of organohalide contamination, but bioremediation of PBDE-contaminated sites is limited by a lack of knowledge about PBDE-dehalogenating microbial populations. Here we report anaerobic PBDE debromination in microcosms established from geographically distinct e-waste recycling sites. Complete debromination of a penta-BDE mixture to diphenyl ether was detected in 16 of 24 investigated microcosms; further enrichment of these 16 microcosms implicated microbial populations belonging to the bacterial genera Dehalococcoides, Dehalogenimonas, and Dehalobacter in PBDE debromination. Debrominating microcosms tended to contain either both Dehalogenimonas and Dehalobacter or Dehalococcoides alone. Separately, complete debromination of a penta-BDE mixture was also observed by axenic cultures of Dehalococcoides mccartyi strains CG1, CG4, and 11a5, suggesting that this phenotype may be fairly common amongst Dehalococcoides. PBDE debromination in these isolates was mediated by four reductive dehalogenases not previously known to debrominate PBDEs. Debromination of an octa-BDE mixture was less prevalent and less complete in microcosms. The PBDE reductive dehalogenase homologous genes in Dehalococcoides genomes represent plausible molecular markers to predict PBDE debromination in microbial communities via their prevalence and transcriptions analysis.


Assuntos
Resíduo Eletrônico , Éteres Difenil Halogenados , Bactérias/genética , Biodegradação Ambiental , Ecossistema , Humanos
8.
Environ Sci Technol ; 56(12): 8008-8019, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35549250

RESUMO

Polybrominated diphenyl ethers (PBDEs) are prevalent environmental pollutants, but bioremediation of PBDEs remains to be reported. Here we report accelerated remediation of a penta-BDE mixture in sediments by bioaugmentation with Dehalococcoides mccartyi strains CG1 and TZ50. Bioaugmentation with different amounts of each Dehalococcoides strain enhanced debromination of penta-BDEs compared with the controls. The sediment microcosm spiked with 6.8 × 106 cells/mL strain CG1 showed the highest penta-BDEs removal (89.9 ± 7.3%) to diphenyl ether within 60 days. Interestingly, co-contaminant tetrachloroethene (PCE) improved bioaugmentation performance, resulting in faster and more extensive penta-BDEs debromination using less bioinoculants, which was also completely dechlorinated to ethene by introducing D. mccartyi strain 11a. The better bioaugmentation performance in sediments with PCE could be attributed to the boosted growth of the augmented Dehalococcoides and capability of the PCE-induced reductive dehalogenases to debrominate penta-BDEs. Finally, ecological analyses showed that bioaugmentation resulted in more deterministic microbial communities, where the augmented Dehalococcoides established linkages with indigenous microorganisms but without causing obvious alterations of the overall community diversity and structure. Collectively, this study demonstrates that bioaugmentation with Dehalococcoides is a feasible strategy to completely remove PBDEs in sediments.


Assuntos
Poluentes Ambientais , Tetracloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , Dehalococcoides , Sedimentos Geológicos/química , Éteres Difenil Halogenados
9.
Environ Sci Technol ; 56(7): 4039-4049, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298122

RESUMO

Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are notorious persistent organic pollutants. However, few organohalide-respiring bacteria that harbor reductive dehalogenases (RDases) capable of dehalogenating these pollutants have been identified. Here, we report reductive dehalogenation of penta-BDEs and PCBs byDehalococcoides mccartyi strain MB. The PCE-pregrown cultures of strain MB debrominated 86.6 ± 7.4% penta-BDEs to di- to tetra-BDEs within 5 days. Similarly, extensive dechlorination of Aroclor1260 and Aroclor1254 was observed in the PCE-pregrown cultures of strain MB, with the average chlorine per PCB decreasing from 6.40 ± 0.02 and 5.40 ± 0.03 to 5.98 ± 0.11 and 5.19 ± 0.07 within 14 days, respectively; para-substituents were preferentially dechlorinated from PCBs. Moreover, strain MB showed distinct enantioselective dechlorination of different chiral PCB congeners. Dehalogenation activity and cell growth were maintained during the successive transfer of cultures when amended with penta-BDEs as the sole electron acceptors but not when amended with only PCBs, suggesting metabolic and co-metabolic dehalogenation of these compounds, respectively. Transcriptional analysis, proteomic profiling, and in vitro activity assays indicated that MbrA was involved in dehalogenating PCE, PCBs, and PBDEs. Interestingly, resequencing of mbrA in strain MB identified three nonsynonymous mutations within the nucleotide sequence, although the consequences of which remain unknown. The substrate versatility of MbrA enabled strain MB to dechlorinate PCBs in the presence of either penta-BDEs or PCE, suggesting that co-metabolic dehalogenation initiated by multifunctional RDases may contribute to PCB attenuation at sites contaminated with multiple organohalide pollutants.


Assuntos
Chloroflexi , Bifenil Polibromatos , Bifenilos Policlorados , Biodegradação Ambiental , Catálise , Chloroflexi/genética , Chloroflexi/metabolismo , Dehalococcoides , Éteres Difenil Halogenados/metabolismo , Bifenil Polibromatos/metabolismo , Bifenilos Policlorados/metabolismo , Proteômica
10.
Sci Total Environ ; 813: 152458, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34953840

RESUMO

As a potent atmospheric greenhouse gas and a major source of ozone depletion, nitrous oxide (N2O) emission has been given increasing attention in aquatic systems, particularly at the aquatic-terrestrial interfaces, such as riparian zones. However, the microbial mechanisms regulating N2O emission in riparian zones remain unknown. Here, we measured the contributions of denitrification and ammonium oxidation to N2O emission along with the abundance and community structure of nirK-, nirS-, nosZ I- and nosZ II-harbouring bacteria in both surface sediments (0-10 cm) and overlying water along a lake riparian zone (including nearshore sites and offshore sites). Overall, the nearshore sites of the riparian zones emitted less N2O than the offshore sites. Nearshore N2O emission was dominated by denitrification with a high N2O reduction rate, whereas offshore N2O emission was driven by ammonium oxidation. Furthermore, N2O derived from ammonium oxidation was influenced by the NH4+-N content, and denitrification N2O was modulated by denitrifier communities. The N2O-producing community was dominated by nirS-harbouring bacteria, while the N2O-reducing community was dominated by nosZ I-harbouring bacteria. The relative abundance of Hydrogenophilales from nirS-denitrifiers and Chloroflexi unclassified from nosZ II-type communities influenced the N2O produced by denitrification, according to high-throughput sequencing analysis. Additionally, we also found lower levels of N2O production per unit volume in overlying water, which were 3-4 orders of magnitude less than in the surface sediment. Overall, we propose that using riparian zones can be an effective management tool for N2O mitigation by enhancing the N2O reduction process of denitrification and decreasing ammonium oxidation.


Assuntos
Desnitrificação , Microbiologia do Solo , Bactérias , Óxido Nitroso/análise , Solo
11.
Appl Environ Microbiol ; 88(4): e0218121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34910572

RESUMO

As a group, the genus Dehalococcoides dehalogenates a wide range of organohalide pollutants, but the range of organohalide compounds that can be utilized for reductive dehalogenation differs among Dehalococcoides strains. Dehalococcoides lineages cannot be reliably disambiguated in mixed communities using typical phylogenetic markers, which often confounds bioremediation efforts. Here, we describe a computational approach to identify Dehalococcoides genetic markers with improved discriminatory resolution. Screening core genes from the Dehalococcoides pangenome for degree of similarity and frequency of 100% identity found a candidate genetic marker encoding a bacterial neuraminidase repeat (BNR)-containing protein of unknown function. This gene exhibits the fewest completely identical amino acid sequences and has among the lowest average amino acid sequence identity in the core pangenome. Primers targeting BNR could effectively discriminate between 40 available BNR sequences (in silico) and 10 different Dehalococcoides isolates (in vitro). Amplicon sequencing of BNR fragments generated from 22 subsurface soil samples revealed a total of 109 amplicon sequence variants, suggesting a high diversity of Dehalococcoides distributed in the environment. Therefore, the BNR gene can serve as an alternative genetic marker to differentiate strains of Dehalococcoides in complicated microbial communities. IMPORTANCE The challenge of discriminating between phylogenetically similar but functionally distinct bacterial lineages is particularly relevant to the development of technologies seeking to exploit the metabolic or physiological characteristics of specific members of bacterial genera. A computational approach was developed to expedite screening of potential genetic markers among phylogenetically affiliated bacteria. Using this approach, a gene encoding a bacterial neuraminidase repeat (BNR)-containing protein of unknown function was selected and evaluated as a genetic marker to differentiate strains of Dehalococcoides, an environmentally relevant genus of bacteria whose members can transform and detoxify a range of halogenated organic solvents and persistent organic pollutants, in complex microbial communities to demonstrate the validity of the approach. Moreover, many apparently phylogenetically distinct, currently uncharacterized Dehalococcoides were detected in environmental samples derived from contaminated sites.


Assuntos
Chloroflexi , Biodegradação Ambiental , Chloroflexi/metabolismo , Dehalococcoides , Marcadores Genéticos , Filogenia
12.
Environ Pollut ; 290: 118060, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479159

RESUMO

As replacements for "old" organohalides, such as polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), "new" organohalides have been developed, including decabromodiphenyl ethane (DBDPE), short-chain chlorinated paraffins (SCCPs), and perfluorobutyrate (PFBA). In the past decade, these emerging organohalides (EOHs) have been extensively produced as industrial and consumer products, resulting in their widespread environmental distribution. This review comprehensively summarizes the environmental occurrence and remediation methods for typical EOHs. Based on the data collected from 2015 to 2021, these EOHs are widespread in both abiotic (e.g., dust, air, soil, sediment, and water) and biotic (e.g., bird, fish, and human serum) matrices. A significant positive correlation was found between the estimated annual production amounts of EOHs and their environmental contamination levels, suggesting the prohibition of both production and usage of EOHs as a critical pollution-source control strategy. The strengths and weaknesses, as well as the future prospects of up-to-date remediation techniques, such as photodegradation, chemical oxidation, and biodegradation, are critically discussed. Of these remediation techniques, microbial reductive dehalogenation represents a promising in situ remediation method for removal of EOHs, such as perfluoroalkyl and polyfluoroalkyl substances (PFASs) and halogenated flame retardants (HFRs).


Assuntos
Retardadores de Chama , Bifenilos Policlorados , Animais , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Humanos , Parafina/análise
13.
J Hazard Mater ; 420: 126630, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34293691

RESUMO

Bioremediation of polychlorinated biphenyls (PCBs) is impeded by difficulties in massively cultivating bioinoculant. Meanwhile, sewage sludge is rich in pollutant-degrading microorganisms and nutrients, drawing our attention to investigate their potential to be used as a supplement for bioremediation of PCBs. Here we reported extensive microbial reductive dechlorination of PCBs by waste activated sludge (WAS) and digestion sludge (DS), which were identified to harbor multiple putative organohalide-respiring bacteria (i.e., Dehalococcoides, Dehalogenimonas, Dehalobacter, and uncultivated Dehalococcoidia) and PCB reductive dehalogenase genes (i.e., pcbA4 and pcbA5). Consequently, amendment of 1-20% (w/w) fresh WAS/DS enhanced the attenuation of PCBs by 126-544% in a soil microcosm compared with the control soil, with the fastest dechlorination of PCBs being achieved when spiked with 20% fresh WAS. Notably, dechlorination pathways of PCBs were also changed by sludge amendment. Microbial and physicochemical analyses revealed that the enhanced dechlorination of PCBs by sludge amendment was largely attributed to the synergistic effects of sludge-derived nutrients, PCB-dechlorinating bacteria, and stimulated growth of beneficial microorganisms (e.g., fermenters). Finally, risk assessment of heavy metals suggests low potential ecological risks of sludge amendment in soil. Collectively, our study demonstrates that sewage sludge amendment could be an efficient, cost-effective and environment-friendly approach for in situ bioremediation of PCBs.


Assuntos
Chloroflexi , Bifenilos Policlorados , Aceleração , Biodegradação Ambiental , Bifenilos Policlorados/análise , Esgotos , Solo
14.
Appl Environ Microbiol ; 87(17): e0060221, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34160266

RESUMO

Polybrominated diphenyl ethers (PBDEs) are persistent, highly toxic, and widely distributed environmental pollutants. The microbial populations and functional reductive dehalogenases (RDases) responsible for PBDE debromination in anoxic systems remain poorly understood, which confounds bioremediation of PBDE-contaminated sites. Here, we report a PBDE-debrominating enrichment culture dominated by a previously undescribed Dehalococcoides mccartyi population. A D. mccartyi strain, designated TZ50, whose genome contains 25 putative RDase-encoding genes, was isolated from the debrominating enrichment culture. Strain TZ50 dehalogenated a mixture of pentabrominated diphenyl ether (penta-BDE) and tetra-BDE congeners (total BDEs, 1.48 µM) to diphenyl ether within 2 weeks (0.58 µM Br-/day) via ortho- and meta-bromine elimination; strain TZ50 also dechlorinated tetrachloroethene (PCE) to vinyl chloride and ethene (260.2 µM Cl-/day). Results of native PAGE, proteomic profiling, and in vitro enzymatic activity assays implicated the involvement of three RDases in PBDE and PCE dehalogenation. TZ50_0172 (PteATZ50) and TZ50_1083 (TceATZ50) were responsible for the debromination of penta- and tetra-BDEs to di-BDE. TZ50_0172 and TZ50_1083 were also implicated in the dechlorination of PCE to trichloroethene (TCE) and of TCE to vinyl chloride/ethene, respectively. The other expressed RDase, TZ50_0090 (designated BdeA), was associated with the debromination of di-BDE to diphenyl ether, but its role in PCE dechlorination was unclear. Comparatively few RDases are known to be involved in PBDE debromination, and the identification of PteATZ50, TceATZ50, and BdeA provides additional information for evaluating debromination potential at contaminated sites. Moreover, the ability of PteATZ50 and TceATZ50 to dehalogenate both PBDEs and PCE makes strain TZ50 a suitable candidate for the remediation of cocontaminated sites. IMPORTANCE The ubiquity, toxicity, and persistence of polybrominated diphenyl ethers (PBDEs) in the environment have drawn significant public and scientific interest to the need for the remediation of PBDE-contaminated ecosystems. However, the low bioavailability of PBDEs in environmental compartments typically limits bioremediation of PBDEs and has long impeded the study of anaerobic microbial PBDE removal. In the current study, a novel Dehalococcoides mccartyi strain, dubbed strain TZ50, that expresses RDases that mediate organohalide respiration of both PBDEs and chloroethenes was isolated and characterized. Strain TZ50 could potentially be used to remediate multiple cooccurring organohalides in contaminated systems.


Assuntos
Proteínas de Bactérias/metabolismo , Dehalococcoides/enzimologia , Poluentes Ambientais/metabolismo , Éteres Difenil Halogenados/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Dehalococcoides/genética , Dehalococcoides/metabolismo , Poluentes Ambientais/química , Genoma Bacteriano , Éteres Difenil Halogenados/química , Halogenação , Tricloroetileno/química , Tricloroetileno/metabolismo
15.
J Hazard Mater ; 419: 126408, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34174623

RESUMO

TetraBromoBisphenol-A (TBBPA) is a widely used brominated flame retardant and an emerging contaminant that has amassed significant environmental impacts. Though there are a few studies that report the bioremediation of TBBPA, there is no direct evidence to suggest a metabolic use of TBBPA as the sole electron acceptor, which offers an advantage in the complete and energy-efficient process of debromination under anaerobic conditions. In this study, Dehalococcoides mccartyi strain CG1 was identified to be capable of utilizing TBBPA as the sole electron acceptor at its maximum soluble concentrations (7.3 µM) coupled with cell growth. A previously characterized reductive dehalogenase (RDase), PcbA1, and six other RDases of strain CG1 were detected during TBBPA debromination via transcriptional and proteomic analyses. Furthermore, as a commonly co-contaminated brominated flame retardant of TBBPA, penta-BDEs were debrominated synchronously with TBBPA by strain CG1. This study provides deeper insights into the versatile dehalogenation capabilities of D. mccartyi strain CG1 and its role in in situ remediations of persistent organic pollutants in the environment.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Biodegradação Ambiental , Dehalococcoides , Proteômica
16.
Environ Sci Technol ; 55(8): 4205-4226, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33705105

RESUMO

Halogenated flame retardants (HFRs) have been extensively used in various consumer products and many are classified as persistent organic pollutants due to their resistance to degradation, bioaccumulation potential and toxicity. HFRs have been widely detected in the municipal wastewater and wastewater treatment solids in wastewater treatment plants (WWTPs), the discharge and agricultural application of which represent a primary source of environmental HFRs contamination. This review seeks to provide a current overview on the occurrence, fate, and impacts of HFRs in WWTPs around the globe. We first summarize studies recording the occurrence of representative HFRs in wastewater and wastewater treatment solids, revealing temporal and geographical trends in HFRs distribution. Then, the efficiency and mechanism of HFRs removal by biosorption, which is known to be the primary process for HFRs removal from wastewater, during biological wastewater treatment processes, are discussed. Transformation of HFRs via abiotic and biotic processes in laboratory tests and full-scale WWTPs is reviewed with particular emphasis on the transformation pathways and functional microorganisms responsible for HFRs biotransformation. Finally, the potential impacts of HFRs on reactor performance (i.e., nitrogen removal and methanogenesis) and microbiome in bioreactors are discussed. This review aims to advance our understanding of the fate and impacts of HFRs in WWTPs and shed light on important questions warranting further investigation.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , Purificação da Água , Reatores Biológicos , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Águas Residuárias , Poluentes Químicos da Água/análise
17.
Diabetes Metab Syndr Obes ; 14: 1035-1042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33727836

RESUMO

PURPOSE: The prevalence of nonalcoholic fatty liver disease (NAFLD), which has recently become known as metabolic-associated fatty liver disease (MAFLD), has risen. However, pharmacotherapies for this disease have not been approved. Electromagnetic fields (EMFs) have excellent bioeffects on multiple diseases. However, the effects of EMFs on NAFLD are unknown. This study investigated the bioeffects of EMF exposure on insulin resistance, liver redox homeostasis and hepatic steatosis in db/db mice. METHODS: Animals were sacrificed after EMF exposure for 8 weeks. The fasting blood glucose and insulin levels in the serum were tested. The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated by a formula. The levels of MDA, GSSG and GSH, biomarkers of redox, were assessed. The activities of CAT, SOD and GSH-Px were assessed. The body and liver weights were measured. Hepatic lipid accumulation was observed by Oil Red O staining. Hepatic CAT, GR, GSH-Px, SOD1, SOD2 and SREBP-1 expression was determined by Western blotting. RESULTS: EMF exposure ameliorated insulin resistance and oxidative stress in the liver by downregulating the MDA and GSSG levels, increasing the reduced GSH levels, and promoting the GSH-Px levels in db/db mice. In addition, liver weight and triglyceride (TG) levels were reduced by EMF exposure. Simultaneously, EMF exposure improved hepatic steatosis by downregulating the protein expression of SREBP-1c. CONCLUSION: The present findings suggest that EMF exposure has positive effects in the treatment of NAFLD.

18.
Bioresour Technol ; 328: 124826, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33631461

RESUMO

Fluoroquinolone antibiotics like ofloxacin (OFL) have been frequently detected in the aquatic environment. Recently manganese-oxidizing bacteria (MOB) have attracted research efforts on the degradation of recalcitrant pollutants with the aid of their biogenic manganese oxides (BioMnOx). Herein, the degradation of OFL with a strain of MOB (Pseudomonas sp. F2) was investigated for the first time. It was found that the bacteria can degrade up to 100% of 5 µg/L OFL. BioMnOx and Mn(III) intermediates significantly contributed to the degradation. Moreover, the degradation was clearly declined when the microbial activity was inactivated by heat or ethanol, indicating the importance of bioactivity. Possible transformation products of OFL were identified by HPLC-MS and the degradation pathway was proposed. In addition, the toxicity of OFL was reduced by 66% after the degradation.


Assuntos
Manganês , Pseudomonas , Bactérias , Compostos de Manganês , Ofloxacino , Oxirredução , Óxidos
19.
Front Microbiol ; 12: 806795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35250910

RESUMO

Polybrominated diphenyl ethers (PBDEs), commonly used as flame retardants in a wide variety of consumer products, are emerging persistent pollutants and ubiquitously distributed in the environment. The lack of proper bacterial populations to detoxify these recalcitrant pollutants, in particular of higher brominated congeners, has confounded the attempts to bioremediate PBDE-contaminated sites. In this study, we report a Dehalococcoides-containing enrichment culture, PB, which completely debrominates 0.44 µM tetra-brominated diphenyl ether (BDE) 47 to diphenyl ether within 25 days (0.07 µM Br-/day) and extensively debrominates 62.4 ± 4.5% of 0.34 µM hepta-BDE 183 (0.006 µM Br-/day) with a predominant generation of penta- through tri-BDEs as well as small amounts of diphenyl ether within 120 days. Later, a marked acceleration rate (0.021 µM Br-/day) and more extensive debromination (87.7 ± 2.1%) of 0.38 µM hepta-BDE 183 was observed in the presence of 0.44 µM tetra-BDE 47, which is achieved via the faster growth rate of responsible bacterial populations on lower BDE-47 and debromination by expressed BDE-47 reductive dehalogenases. Therefore, the PB enrichment culture can serve as a potential candidate for in situ PBDE bioremediation since both BDE-47 and BDE-183 are dominant and representative BDE congeners and often coexist in contaminated sites.

20.
Water Res ; 181: 115893, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32502751

RESUMO

Anthropogenic organohalide contaminants present in wastewater treatment plants (WWTPs) often remain untreated and can be discharged into the environment. Although organohalide respiring bacteria (OHRB) contribute to the elimination of anthropogenic organohalides in natural anaerobic environments, reductive dehalogenation by OHRB in mainstream WWTPs remains poorly understood. In this study, we quantified OHRB during a long-term operation of a municipal WWTP with short hydraulic and sludge retention times (3 h and 1.5-5 days, respectively). The obligate OHRB were detected at high levels (averaging 2.56 ± 1.73 × 107 and 3.11 ± 1.16 × 107 16S rRNA gene copies/ml MLSS sludge in anoxic and aerobic zones, respectively) over the entire sampling period and throughout the wastewater treatment train. Microcosms derived from mainstream activated sludge contained an unidentified member of the Dehalococcoides genus that metabolically dechlorinated triclosan, used as a representative emerging organohalide antimicrobial, to diclosan, suggesting the potential of anaerobic degradation of emerging contaminants in WWTPs. To further understand the mechanisms for such antimicrobials' removal, an investigation of dechlorination of triclosan by Dehalococcoides strains was conducted. Dechlorination of environmentally relevant concentrations of triclosan to diclosan was observed in Dehalococcoides mccartyi strain CG1, yielding 4.59 ± 0.34 × 108 cells/µmole Cl- removed at a rate of 0.062 µM/day and a minimal inhibitory concentration of 0.5 mg/L. Notably, both the tolerance of strain CG1 to triclosan and the rate of triclosan dechlorination increased when CG1 was cultured in the presence of both triclosan and tetrachloroethene. Taken together, our results suggest that anaerobic degradation of organohalide antimicrobials might be more prevalent in mainstream WWTPs than previously speculated, though the low growth yields that are supported by triclosan dechlorination seem to indicate that other organohalide substrates could be necessary to sustain OHRB populations in these systems.


Assuntos
Anti-Infecciosos , Chloroflexi , Bactérias , Biodegradação Ambiental , RNA Ribossômico 16S , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...